{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Kalman filter\n", "\n", "We will go through this notebook after a Power Point lecture.\n", "\n", "In the Power Point lecture, we showed -- amongst other imates -- figures from [this PDF](https://synapticlab.co.kr/attachment/cfile1.uf@2737C54B590907BA0D46CE.pdf) ([doi:10.1109/MSP.2012.2203621](https://doi.org/10.1109/MSP.2012.2203621)).\n", "\n", "As further reading, I recommend this webpage: [How a Kalman filter works, in pictures](https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/).\n", "\n", "For a wonderful, if hardcore, Python-based Kalman filter library and documentation, please see [FilterPy](https://filterpy.readthedocs.io/en/latest/)." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "!pip install adskalman" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Kalman filter example in Python" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import adskalman.adskalman as adskalman\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def column(arr):\n", " \"\"\"convert 1D array-like to a 2D vertical array\n", "\n", " >>> column((1,2,3))\n", "\n", " array([[1],\n", " [2],\n", " [3]])\n", " \"\"\"\n", " arr = np.array(arr)\n", " assert arr.ndim == 1\n", " a2 = arr[:, np.newaxis]\n", " return a2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Create a 4-dimensional state space model:\n", "# (x, y, xvel, yvel).\n", "dt = 0.01\n", "true_initial_state = column([0.0, 0.0, 10.0, -5.0])\n", "# This is F in wikipedia language.\n", "motion_model = np.array([[1.0, 0.0, dt, 0.0],\n", " [0.0, 1.0, 0.0, dt],\n", " [0.0, 0.0, 1.0, 0.0],\n", " [0.0, 0.0, 0.0, 1.0]])\n", "\n", "# This is Q in wikipedia language. For a constant velocity form, it must take this specific form to be correct.\n", "T3 = dt**3/3\n", "T2 = dt**2/2\n", "motion_noise_covariance = 1000.0*np.array([[T3, 0.0, T2, 0.0],\n", " [0.0, T3, 0.0, T2],\n", " [T2, 0.0, dt, 0.0],\n", " [0.0, T2, 0.0, dt]])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "duration = 0.5\n", "t = np.arange(0.0, duration, dt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Create some fake data with our model.\n", "current_state = true_initial_state\n", "state = []\n", "for _ in t:\n", " state.append(current_state[:, 0])\n", " noise_sample = adskalman.rand_mvn(np.zeros(4), motion_noise_covariance, 1).T\n", " current_state = np.dot(motion_model, current_state) + noise_sample\n", "state = np.array(state)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(state[:, 0], state[:, 1], '.-')\n", "plt.xlabel('x')\n", "_ = plt.ylabel('y')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Create observation model. We only observe the position.\n", "observation_model = np.array([[1.0, 0.0, 0.0, 0.0],\n", " [0.0, 1.0, 0.0, 0.0]])\n", "observation_noise_covariance = np.array([[0.01, 0.0],\n", " [0.0, 0.01]])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Create noisy observations.\n", "observation = []\n", "for current_state in state:\n", " noise_sample = adskalman.rand_mvn(np.zeros(2), observation_noise_covariance, 1).T\n", " current_observation = np.dot(observation_model, column(current_state)) + noise_sample\n", " observation.append(current_observation[:, 0])\n", "observation = np.array(observation)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(observation[:, 0], observation[:, 1], '.-')\n", "plt.xlabel('x')\n", "_ = plt.ylabel('y')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Run kalman filter on the noisy observations.\n", "y = observation\n", "F = motion_model\n", "H = observation_model\n", "Q = motion_noise_covariance\n", "R = observation_noise_covariance\n", "initx = true_initial_state[:, 0]\n", "initV = 0.1*np.eye(4)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "kfilt = adskalman.KalmanFilter(F, H, Q, R, initx, initV)\n", "xfilt = []\n", "Vfilt = []\n", "for i, y_i in enumerate(y):\n", " is_initial = i == 0\n", " xfilt_i, Vfilt_i = kfilt.step(y=y_i, isinitial=is_initial)\n", " xfilt.append(xfilt_i)\n", " Vfilt.append(Vfilt_i)\n", "xfilt = np.array(xfilt)\n", "Vfilt = np.array(Vfilt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(state[:, 0], state[:, 1], '.-', label='true')\n", "plt.plot(observation[:, 0], observation[:, 1], '.-', label='observed')\n", "plt.plot(xfilt[:, 0], xfilt[:, 1], '.-', label='kalman filtered')\n", "plt.xlabel('x')\n", "plt.ylabel('y')\n", "_ = plt.legend()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Now run again with missing data\n", "y[20:30, :] = np.nan\n", "kfilt = adskalman.KalmanFilter(F, H, Q, R, initx, initV)\n", "xfilt = []\n", "Vfilt = []\n", "for i, y_i in enumerate(y):\n", " is_initial = i == 0\n", " xfilt_i, Vfilt_i = kfilt.step(y=y_i, isinitial=is_initial)\n", " xfilt.append(xfilt_i)\n", " Vfilt.append(Vfilt_i)\n", "xfilt = np.array(xfilt)\n", "Vfilt = np.array(Vfilt)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.plot(state[:, 0], state[:, 1], '.-', label='true')\n", "plt.plot(observation[:, 0], observation[:, 1], '.-', label='observed')\n", "plt.plot(xfilt[:, 0], xfilt[:, 1], '.-', label='kalman filtered')\n", "plt.xlabel('x')\n", "plt.ylabel('y')\n", "_ = plt.legend()" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.10" } }, "nbformat": 4, "nbformat_minor": 4 }