lecture for today

This commit is contained in:
Andrew Straw 2024-11-22 09:30:44 +01:00
parent cae59ac414
commit 153d998716
3 changed files with 915 additions and 0 deletions

View file

@ -0,0 +1,208 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Reminder\n",
"\n",
"Do you need to register for \"Studienleistung\" in HisInOne?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Speedrun: command line treasure hunt (schnitzeljagd)\n",
"\n",
"We will do a quick speedrun of the schnitzeljagd exercise starting with `ssh your-user-name@python-course.strawlab.org`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Classes\n",
"\n",
"Here is an example of a simple class:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class MyClass:\n",
" def my_method(self):\n",
" print(\"This was printed from a method inside the class.\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We'll discuss the \"self\" parameter below. First, let's create an instance of this class:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x = MyClass()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x.my_method()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Why classes?\n",
"\n",
"The great benefit of classes is that they keep data and functions organized togther. The functions within a class are called \"methods\" and always take the first parameter, \"self\".\n",
"\n",
"With small pieces of code, this is not so important, but as the size of software grows larger, this is handy for keeping things organized. Most Python libraries make extensive use of classes.\n",
"\n",
"A class is like a template and multiple instances of this template can be created.\n",
"\n",
"## Creating an instance of a class\n",
"\n",
"Class definitions can have a special method caled `__init__()`. This initialization method, also called constructor, is called when an instance of a class is created. It is used to store variables and perform other setup."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class MyClass:\n",
" def __init__(self):\n",
" self.my_variable = \"foo\"\n",
" def my_method(self):\n",
" print(\"My variable is {}.\".format(self.my_variable))\n",
" def set_var(self,new_value):\n",
" self.my_variable = new_value\n",
" \n",
"x = MyClass()\n",
"x.my_method()\n",
"\n",
"x.set_var(\"bar\")\n",
"x.my_method()\n",
"\n",
"x.my_variable = \"zzz\"\n",
"x.my_method()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What is this `self` thing?\n",
"\n",
"As mentioned, `self` is always the first argument of any method. It contains the data (variables) for a specific instance of a class."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class Insect:\n",
" def __init__(self, species_name, mass, mass_units='milligrams'):\n",
" self.species_name = species_name\n",
" self.mass = mass\n",
" self.mass_units = mass_units\n",
" def print_description(self):\n",
" print(\"The insect (species {}) has a mass of {} {}.\".format(\n",
" self.species_name, self.mass, self.mass_units))\n",
" def eat(self,amount):\n",
" # (This could alternatively be done with `self.mass += amount`.)\n",
" self.mass = self.mass + amount\n",
" def exercise(self,amount):\n",
" self.mass = self.mass - amount\n",
" \n",
"x = Insect(\"Bombus terrestris\", 200)\n",
"x.print_description()\n",
"x.eat(10)\n",
"x.exercise(5)\n",
"x.print_description()\n",
"\n",
"y = Insect(\"Apis mellifera\", 100)\n",
"y.print_description()\n",
"# y.eat(10)\n",
"# y.print_description()\n",
"\n",
"z = Insect(\"Tarantula gigantus\", 10, mass_units=\"grams\") # yes, it's not really an insect...\n",
"z.print_description()\n",
"\n",
"# print(x.species_name,x.mass)\n",
"# print(y.species_name,y.mass)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can see we access the value of a variable within a method using `self.variable_name`. Outside the function, we can also access the \"instance variables\" but we need to use the instance name and a dot:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(x.species_name)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(y.species_name)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As mentioned, most Python libraries make use of classes to organize their code. All objects in Python act a lot like instances of classes. For example, the string methods `.strip()` and `.format()` could be defined on a hypothetical `String` class exactly like the methods above. (In reality, they are likely implemented differently for performance reasons.)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View file

@ -0,0 +1,556 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Pandas\n",
"\n",
"![pandas logo](https://pandas.pydata.org/static/img/pandas.svg)\n",
"\n",
"\"high-performance, easy-to-use data structures and data analysis tools\" https://pandas.pydata.org/\n",
"\n",
"Pandas is typically imported as `pd`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# We will start with the Iris dataset from a previous lecture\n",
"iris_dataset = {'sepal length (cm)': [5.1, 4.9, 4.7, 4.6, 5.0, 5.4, 4.6, 5.0, 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5.0, 5.0, 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5.0, 5.5, 4.9, 4.4, 5.1, 5.0, 4.5, 4.4, 5.0, 5.1, 4.8, 5.1, 4.6, 5.3, 5.0, 7.0, 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5.0, 5.9, 6.0, 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6.0, 5.7, 5.5, 5.5, 5.8, 6.0, 5.4, 6.0, 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5.0, 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6.0, 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6.0, 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9], 'sepal width (cm)': [3.5, 3.0, 3.2, 3.1, 3.6, 3.9, 3.4, 3.4, 2.9, 3.1, 3.7, 3.4, 3.0, 3.0, 4.0, 4.4, 3.9, 3.5, 3.8, 3.8, 3.4, 3.7, 3.6, 3.3, 3.4, 3.0, 3.4, 3.5, 3.4, 3.2, 3.1, 3.4, 4.1, 4.2, 3.1, 3.2, 3.5, 3.6, 3.0, 3.4, 3.5, 2.3, 3.2, 3.5, 3.8, 3.0, 3.8, 3.2, 3.7, 3.3, 3.2, 3.2, 3.1, 2.3, 2.8, 2.8, 3.3, 2.4, 2.9, 2.7, 2.0, 3.0, 2.2, 2.9, 2.9, 3.1, 3.0, 2.7, 2.2, 2.5, 3.2, 2.8, 2.5, 2.8, 2.9, 3.0, 2.8, 3.0, 2.9, 2.6, 2.4, 2.4, 2.7, 2.7, 3.0, 3.4, 3.1, 2.3, 3.0, 2.5, 2.6, 3.0, 2.6, 2.3, 2.7, 3.0, 2.9, 2.9, 2.5, 2.8, 3.3, 2.7, 3.0, 2.9, 3.0, 3.0, 2.5, 2.9, 2.5, 3.6, 3.2, 2.7, 3.0, 2.5, 2.8, 3.2, 3.0, 3.8, 2.6, 2.2, 3.2, 2.8, 2.8, 2.7, 3.3, 3.2, 2.8, 3.0, 2.8, 3.0, 2.8, 3.8, 2.8, 2.8, 2.6, 3.0, 3.4, 3.1, 3.0, 3.1, 3.1, 3.1, 2.7, 3.2, 3.3, 3.0, 2.5, 3.0, 3.4, 3.0], 'petal length (cm)': [1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6, 1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1.0, 1.7, 1.9, 1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4, 1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7, 4.5, 4.9, 4.0, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4.0, 4.7, 3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4.0, 4.9, 4.7, 4.3, 4.4, 4.8, 5.0, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4.0, 4.4, 4.6, 4.0, 3.3, 4.2, 4.2, 4.2, 4.3, 3.0, 4.1, 6.0, 5.1, 5.9, 5.6, 5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5.0, 5.1, 5.3, 5.5, 6.7, 6.9, 5.0, 5.7, 4.9, 6.7, 4.9, 5.7, 6.0, 4.8, 4.9, 5.6, 5.8, 6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1, 5.9, 5.7, 5.2, 5.0, 5.2, 5.4, 5.1], 'petal width (cm)': [0.2, 0.2, 0.2, 0.2, 0.2, 0.4, 0.3, 0.2, 0.2, 0.1, 0.2, 0.2, 0.1, 0.1, 0.2, 0.4, 0.4, 0.3, 0.3, 0.3, 0.2, 0.4, 0.2, 0.5, 0.2, 0.2, 0.4, 0.2, 0.2, 0.2, 0.2, 0.4, 0.1, 0.2, 0.2, 0.2, 0.2, 0.1, 0.2, 0.2, 0.3, 0.3, 0.2, 0.6, 0.4, 0.3, 0.2, 0.2, 0.2, 0.2, 1.4, 1.5, 1.5, 1.3, 1.5, 1.3, 1.6, 1.0, 1.3, 1.4, 1.0, 1.5, 1.0, 1.4, 1.3, 1.4, 1.5, 1.0, 1.5, 1.1, 1.8, 1.3, 1.5, 1.2, 1.3, 1.4, 1.4, 1.7, 1.5, 1.0, 1.1, 1.0, 1.2, 1.6, 1.5, 1.6, 1.5, 1.3, 1.3, 1.3, 1.2, 1.4, 1.2, 1.0, 1.3, 1.2, 1.3, 1.3, 1.1, 1.3, 2.5, 1.9, 2.1, 1.8, 2.2, 2.1, 1.7, 1.8, 1.8, 2.5, 2.0, 1.9, 2.1, 2.0, 2.4, 2.3, 1.8, 2.2, 2.3, 1.5, 2.3, 2.0, 2.0, 1.8, 2.1, 1.8, 1.8, 1.8, 2.1, 1.6, 1.9, 2.0, 2.2, 1.5, 1.4, 2.3, 2.4, 1.8, 1.8, 2.1, 2.4, 2.3, 1.9, 2.3, 2.5, 2.3, 1.9, 2.0, 2.3, 1.8], 'species': ['setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'setosa', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'versicolor', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica', 'virginica']}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# pandas `DataFrame`\n",
"\n",
"The primary interest in pandas is the `DataFrame`. A `DataFrame` is a type, conceptually related to a numpy array, for containing large amounts of data and operating efficiently on it. With `DataFrame`s, however, there is typically more structure. A `DataFrame` is always two dimensional, with every element in a column having the same data type. There are multiple columns, each with a name and potentially different datatypes. The easiest way to think about a `DataFrame` is like a well-organized spreadsheet. Indeed, `DataFrame`s are great for doing the kind of calculations you might do in spreadsheets.\n",
"\n",
"## Creation\n",
"\n",
"One way to create a pandas `DataFrame` is by using its constructor, `DataFrame()`. If provided one argument, a dictionary, it will create a new `DataFrame` instance with a column from each item in the dict. The dict key becomes the column name and the dict value (a Python sequence) becomes are the column data values. Pandas will infer the datatype for the column. It is required that the length of all sequences in the dict are identical so that each column in the `DataFrame` has the same length.\n",
"\n",
"As an example, let's load our Iris dataset."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.DataFrame(iris_dataset)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `head()` and `tail()` methods both return dataframes which are a subset of the original dataframe, with the top and bottom rows, respectively:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.tail()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Note that jupyter and pandas work nicely together to give the nicely formatted output you see above. Here is plain `print()`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(df.tail())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What's happening behind the scenes is that Pandas knows how to use the `diplay()` function from IPython."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from IPython.display import display"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"display(df.head())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# The `DataFrame.groupby()` method\n",
"\n",
"One of the most useful aspects of dataframes is the `groupby()` method, which returns an iterator that steps through the original dataframe by returning subsets (groups) which all have been selected based on a common value. An example will make this more clear.\n",
"\n",
"Here we will step through our original dataframe grouping by species. The iterator from `groupby()` returns, on each iteration, a tuple of `(group_value, group_data_frame)`. Let's look at this in action:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for species, gdf in df.groupby('species'):\n",
" print(f\"species: Iris {species}\")\n",
" display(gdf.head())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's take a closer look at this iteration aspect:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"my_iter = df.groupby('species')\n",
"print(type(my_iter))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"my_iter = df.groupby('species')\n",
"for x in my_iter:\n",
" # species = x[0]\n",
" # gdf = x[1]\n",
" species, gdf = x\n",
" # (species, gdf) = x\n",
" print(species, len(gdf))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for species, gdf in df.groupby('species'):\n",
" print(species, len(gdf))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for species, gdf in df.groupby('species'):\n",
" print(f\"=============== {species} ============\")\n",
" display(gdf)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.describe()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for species, gdf in df.groupby('species'):\n",
" print(f\"=============== {species} ============\")\n",
" display(gdf.describe())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# More about Pandas `DataFrame`s\n",
"\n",
"Let's get started by making a sample dataframe with fake data:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sample_df = pd.DataFrame({'number':[1,2,3,6,2,3,2,2,1,2], 'color':['blue','blue','red','red','red','blue','blue','red','green','yellow']})\n",
"display(sample_df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Getting a `Series` from a `DataFrame` in Pandas\n",
"\n",
"You can get a `Series` (a Pandas 1D array) from a dataframe column by indexing with the column name:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"colors = sample_df['color']\n",
"display(colors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Above we got a `Series` from a `DataFrame` column with dictionary-like get item using square brackets and a string with the name of the column. In addition to this approach, Pandas also has an ergonomic feature where columns with names that are valid Python can be used with a dot (`.`) as if they were variables (also called \"attributes\") of the `DataFrame` instance."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# This does the same thing as above because \"color\" is a valid Python attribute name.\n",
"\n",
"colors = sample_df.color\n",
"display(colors)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"type(colors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"A `Series` has many useful methods, such as `.unique()` and `.mean()`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"colors.unique()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sample_df['number'].mean()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Pandas `read_csv`\n",
"\n",
"[CSV files](https://en.wikipedia.org/wiki/Comma-separated_values) are a very common and very good way to save data. Pandas has a good (and fast) reader for CSV files in the `read_csv()` function."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('iris.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df['species'].unique()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Conditions and selecting part of the data from a `DataFrame`.\n",
"\n",
"Let's consider an equality condition. Let's check every row to test if the 'color' column is equal to `'blue'`:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sample_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sample_df['color']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sample_df['color']=='blue'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As usual, we can assign this result to a variable:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"condition = sample_df['color']=='blue'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can see the type of this result is another `Series`"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"type(condition)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One very useful thing in Pandas is to create a new `DataFrame` based on a condition from an old one. Let's make a new `DataFrame` from only the rows with a blue color:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"condition = sample_df['color']=='blue'\n",
"blue_sample_df = sample_df[ condition ]\n",
"display(blue_sample_df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This could of course be written so:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"blue_sample_df = sample_df[ sample_df['color']=='blue' ]\n",
"display(blue_sample_df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A key concept in Pandas is iterating over a dataframe, grouping by values in one (or more) columns\n",
"\n",
"This allows doing a lot of powerful datascience work which requires nothing more than storing your data in a well-organized format. This of course has other advantages as well. Let's have a look at our `groupby()` example again:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df = pd.read_csv('iris.csv')\n",
"for species, gdf in df.groupby('species'):\n",
" print(f\"=============== {species} ============\")\n",
" display(gdf.describe())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# matplotlib + pandas + ❤️ = seaborn\n",
"\n",
"[Seaborn](https://seaborn.pydata.org/) is \"a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.\" It makes heavy use of pandas to make your life easy."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import seaborn as sns"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sns.stripplot(x=\"species\", y=\"sepal_width\", data=df);"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"sns.stripplot(x=\"species\", y=\"sepal_width\", data=pd.read_csv('iris.csv'));"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's take a minute to look at the [seaborn gallery](https://seaborn.pydata.org/examples/index.html).\n",
"\n",
"And while we are at it, we should not forget the [matplotlib gallery](https://matplotlib.org/stable/gallery/index.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View file

@ -0,0 +1,151 @@
sepal_length,sepal_width,petal_length,petal_width,species
5.1,3.5,1.4,0.2,setosa
4.9,3.0,1.4,0.2,setosa
4.7,3.2,1.3,0.2,setosa
4.6,3.1,1.5,0.2,setosa
5.0,3.6,1.4,0.2,setosa
5.4,3.9,1.7,0.4,setosa
4.6,3.4,1.4,0.3,setosa
5.0,3.4,1.5,0.2,setosa
4.4,2.9,1.4,0.2,setosa
4.9,3.1,1.5,0.1,setosa
5.4,3.7,1.5,0.2,setosa
4.8,3.4,1.6,0.2,setosa
4.8,3.0,1.4,0.1,setosa
4.3,3.0,1.1,0.1,setosa
5.8,4.0,1.2,0.2,setosa
5.7,4.4,1.5,0.4,setosa
5.4,3.9,1.3,0.4,setosa
5.1,3.5,1.4,0.3,setosa
5.7,3.8,1.7,0.3,setosa
5.1,3.8,1.5,0.3,setosa
5.4,3.4,1.7,0.2,setosa
5.1,3.7,1.5,0.4,setosa
4.6,3.6,1.0,0.2,setosa
5.1,3.3,1.7,0.5,setosa
4.8,3.4,1.9,0.2,setosa
5.0,3.0,1.6,0.2,setosa
5.0,3.4,1.6,0.4,setosa
5.2,3.5,1.5,0.2,setosa
5.2,3.4,1.4,0.2,setosa
4.7,3.2,1.6,0.2,setosa
4.8,3.1,1.6,0.2,setosa
5.4,3.4,1.5,0.4,setosa
5.2,4.1,1.5,0.1,setosa
5.5,4.2,1.4,0.2,setosa
4.9,3.1,1.5,0.1,setosa
5.0,3.2,1.2,0.2,setosa
5.5,3.5,1.3,0.2,setosa
4.9,3.1,1.5,0.1,setosa
4.4,3.0,1.3,0.2,setosa
5.1,3.4,1.5,0.2,setosa
5.0,3.5,1.3,0.3,setosa
4.5,2.3,1.3,0.3,setosa
4.4,3.2,1.3,0.2,setosa
5.0,3.5,1.6,0.6,setosa
5.1,3.8,1.9,0.4,setosa
4.8,3.0,1.4,0.3,setosa
5.1,3.8,1.6,0.2,setosa
4.6,3.2,1.4,0.2,setosa
5.3,3.7,1.5,0.2,setosa
5.0,3.3,1.4,0.2,setosa
7.0,3.2,4.7,1.4,versicolor
6.4,3.2,4.5,1.5,versicolor
6.9,3.1,4.9,1.5,versicolor
5.5,2.3,4.0,1.3,versicolor
6.5,2.8,4.6,1.5,versicolor
5.7,2.8,4.5,1.3,versicolor
6.3,3.3,4.7,1.6,versicolor
4.9,2.4,3.3,1.0,versicolor
6.6,2.9,4.6,1.3,versicolor
5.2,2.7,3.9,1.4,versicolor
5.0,2.0,3.5,1.0,versicolor
5.9,3.0,4.2,1.5,versicolor
6.0,2.2,4.0,1.0,versicolor
6.1,2.9,4.7,1.4,versicolor
5.6,2.9,3.6,1.3,versicolor
6.7,3.1,4.4,1.4,versicolor
5.6,3.0,4.5,1.5,versicolor
5.8,2.7,4.1,1.0,versicolor
6.2,2.2,4.5,1.5,versicolor
5.6,2.5,3.9,1.1,versicolor
5.9,3.2,4.8,1.8,versicolor
6.1,2.8,4.0,1.3,versicolor
6.3,2.5,4.9,1.5,versicolor
6.1,2.8,4.7,1.2,versicolor
6.4,2.9,4.3,1.3,versicolor
6.6,3.0,4.4,1.4,versicolor
6.8,2.8,4.8,1.4,versicolor
6.7,3.0,5.0,1.7,versicolor
6.0,2.9,4.5,1.5,versicolor
5.7,2.6,3.5,1.0,versicolor
5.5,2.4,3.8,1.1,versicolor
5.5,2.4,3.7,1.0,versicolor
5.8,2.7,3.9,1.2,versicolor
6.0,2.7,5.1,1.6,versicolor
5.4,3.0,4.5,1.5,versicolor
6.0,3.4,4.5,1.6,versicolor
6.7,3.1,4.7,1.5,versicolor
6.3,2.3,4.4,1.3,versicolor
5.6,3.0,4.1,1.3,versicolor
5.5,2.5,4.0,1.3,versicolor
5.5,2.6,4.4,1.2,versicolor
6.1,3.0,4.6,1.4,versicolor
5.8,2.6,4.0,1.2,versicolor
5.0,2.3,3.3,1.0,versicolor
5.6,2.7,4.2,1.3,versicolor
5.7,3.0,4.2,1.2,versicolor
5.7,2.9,4.2,1.3,versicolor
6.2,2.9,4.3,1.3,versicolor
5.1,2.5,3.0,1.1,versicolor
5.7,2.8,4.1,1.3,versicolor
6.3,3.3,6.0,2.5,virginica
5.8,2.7,5.1,1.9,virginica
7.1,3.0,5.9,2.1,virginica
6.3,2.9,5.6,1.8,virginica
6.5,3.0,5.8,2.2,virginica
7.6,3.0,6.6,2.1,virginica
4.9,2.5,4.5,1.7,virginica
7.3,2.9,6.3,1.8,virginica
6.7,2.5,5.8,1.8,virginica
7.2,3.6,6.1,2.5,virginica
6.5,3.2,5.1,2.0,virginica
6.4,2.7,5.3,1.9,virginica
6.8,3.0,5.5,2.1,virginica
5.7,2.5,5.0,2.0,virginica
5.8,2.8,5.1,2.4,virginica
6.4,3.2,5.3,2.3,virginica
6.5,3.0,5.5,1.8,virginica
7.7,3.8,6.7,2.2,virginica
7.7,2.6,6.9,2.3,virginica
6.0,2.2,5.0,1.5,virginica
6.9,3.2,5.7,2.3,virginica
5.6,2.8,4.9,2.0,virginica
7.7,2.8,6.7,2.0,virginica
6.3,2.7,4.9,1.8,virginica
6.7,3.3,5.7,2.1,virginica
7.2,3.2,6.0,1.8,virginica
6.2,2.8,4.8,1.8,virginica
6.1,3.0,4.9,1.8,virginica
6.4,2.8,5.6,2.1,virginica
7.2,3.0,5.8,1.6,virginica
7.4,2.8,6.1,1.9,virginica
7.9,3.8,6.4,2.0,virginica
6.4,2.8,5.6,2.2,virginica
6.3,2.8,5.1,1.5,virginica
6.1,2.6,5.6,1.4,virginica
7.7,3.0,6.1,2.3,virginica
6.3,3.4,5.6,2.4,virginica
6.4,3.1,5.5,1.8,virginica
6.0,3.0,4.8,1.8,virginica
6.9,3.1,5.4,2.1,virginica
6.7,3.1,5.6,2.4,virginica
6.9,3.1,5.1,2.3,virginica
5.8,2.7,5.1,1.9,virginica
6.8,3.2,5.9,2.3,virginica
6.7,3.3,5.7,2.5,virginica
6.7,3.0,5.2,2.3,virginica
6.3,2.5,5.0,1.9,virginica
6.5,3.0,5.2,2.0,virginica
6.2,3.4,5.4,2.3,virginica
5.9,3.0,5.1,1.8,virginica
1 sepal_length sepal_width petal_length petal_width species
2 5.1 3.5 1.4 0.2 setosa
3 4.9 3.0 1.4 0.2 setosa
4 4.7 3.2 1.3 0.2 setosa
5 4.6 3.1 1.5 0.2 setosa
6 5.0 3.6 1.4 0.2 setosa
7 5.4 3.9 1.7 0.4 setosa
8 4.6 3.4 1.4 0.3 setosa
9 5.0 3.4 1.5 0.2 setosa
10 4.4 2.9 1.4 0.2 setosa
11 4.9 3.1 1.5 0.1 setosa
12 5.4 3.7 1.5 0.2 setosa
13 4.8 3.4 1.6 0.2 setosa
14 4.8 3.0 1.4 0.1 setosa
15 4.3 3.0 1.1 0.1 setosa
16 5.8 4.0 1.2 0.2 setosa
17 5.7 4.4 1.5 0.4 setosa
18 5.4 3.9 1.3 0.4 setosa
19 5.1 3.5 1.4 0.3 setosa
20 5.7 3.8 1.7 0.3 setosa
21 5.1 3.8 1.5 0.3 setosa
22 5.4 3.4 1.7 0.2 setosa
23 5.1 3.7 1.5 0.4 setosa
24 4.6 3.6 1.0 0.2 setosa
25 5.1 3.3 1.7 0.5 setosa
26 4.8 3.4 1.9 0.2 setosa
27 5.0 3.0 1.6 0.2 setosa
28 5.0 3.4 1.6 0.4 setosa
29 5.2 3.5 1.5 0.2 setosa
30 5.2 3.4 1.4 0.2 setosa
31 4.7 3.2 1.6 0.2 setosa
32 4.8 3.1 1.6 0.2 setosa
33 5.4 3.4 1.5 0.4 setosa
34 5.2 4.1 1.5 0.1 setosa
35 5.5 4.2 1.4 0.2 setosa
36 4.9 3.1 1.5 0.1 setosa
37 5.0 3.2 1.2 0.2 setosa
38 5.5 3.5 1.3 0.2 setosa
39 4.9 3.1 1.5 0.1 setosa
40 4.4 3.0 1.3 0.2 setosa
41 5.1 3.4 1.5 0.2 setosa
42 5.0 3.5 1.3 0.3 setosa
43 4.5 2.3 1.3 0.3 setosa
44 4.4 3.2 1.3 0.2 setosa
45 5.0 3.5 1.6 0.6 setosa
46 5.1 3.8 1.9 0.4 setosa
47 4.8 3.0 1.4 0.3 setosa
48 5.1 3.8 1.6 0.2 setosa
49 4.6 3.2 1.4 0.2 setosa
50 5.3 3.7 1.5 0.2 setosa
51 5.0 3.3 1.4 0.2 setosa
52 7.0 3.2 4.7 1.4 versicolor
53 6.4 3.2 4.5 1.5 versicolor
54 6.9 3.1 4.9 1.5 versicolor
55 5.5 2.3 4.0 1.3 versicolor
56 6.5 2.8 4.6 1.5 versicolor
57 5.7 2.8 4.5 1.3 versicolor
58 6.3 3.3 4.7 1.6 versicolor
59 4.9 2.4 3.3 1.0 versicolor
60 6.6 2.9 4.6 1.3 versicolor
61 5.2 2.7 3.9 1.4 versicolor
62 5.0 2.0 3.5 1.0 versicolor
63 5.9 3.0 4.2 1.5 versicolor
64 6.0 2.2 4.0 1.0 versicolor
65 6.1 2.9 4.7 1.4 versicolor
66 5.6 2.9 3.6 1.3 versicolor
67 6.7 3.1 4.4 1.4 versicolor
68 5.6 3.0 4.5 1.5 versicolor
69 5.8 2.7 4.1 1.0 versicolor
70 6.2 2.2 4.5 1.5 versicolor
71 5.6 2.5 3.9 1.1 versicolor
72 5.9 3.2 4.8 1.8 versicolor
73 6.1 2.8 4.0 1.3 versicolor
74 6.3 2.5 4.9 1.5 versicolor
75 6.1 2.8 4.7 1.2 versicolor
76 6.4 2.9 4.3 1.3 versicolor
77 6.6 3.0 4.4 1.4 versicolor
78 6.8 2.8 4.8 1.4 versicolor
79 6.7 3.0 5.0 1.7 versicolor
80 6.0 2.9 4.5 1.5 versicolor
81 5.7 2.6 3.5 1.0 versicolor
82 5.5 2.4 3.8 1.1 versicolor
83 5.5 2.4 3.7 1.0 versicolor
84 5.8 2.7 3.9 1.2 versicolor
85 6.0 2.7 5.1 1.6 versicolor
86 5.4 3.0 4.5 1.5 versicolor
87 6.0 3.4 4.5 1.6 versicolor
88 6.7 3.1 4.7 1.5 versicolor
89 6.3 2.3 4.4 1.3 versicolor
90 5.6 3.0 4.1 1.3 versicolor
91 5.5 2.5 4.0 1.3 versicolor
92 5.5 2.6 4.4 1.2 versicolor
93 6.1 3.0 4.6 1.4 versicolor
94 5.8 2.6 4.0 1.2 versicolor
95 5.0 2.3 3.3 1.0 versicolor
96 5.6 2.7 4.2 1.3 versicolor
97 5.7 3.0 4.2 1.2 versicolor
98 5.7 2.9 4.2 1.3 versicolor
99 6.2 2.9 4.3 1.3 versicolor
100 5.1 2.5 3.0 1.1 versicolor
101 5.7 2.8 4.1 1.3 versicolor
102 6.3 3.3 6.0 2.5 virginica
103 5.8 2.7 5.1 1.9 virginica
104 7.1 3.0 5.9 2.1 virginica
105 6.3 2.9 5.6 1.8 virginica
106 6.5 3.0 5.8 2.2 virginica
107 7.6 3.0 6.6 2.1 virginica
108 4.9 2.5 4.5 1.7 virginica
109 7.3 2.9 6.3 1.8 virginica
110 6.7 2.5 5.8 1.8 virginica
111 7.2 3.6 6.1 2.5 virginica
112 6.5 3.2 5.1 2.0 virginica
113 6.4 2.7 5.3 1.9 virginica
114 6.8 3.0 5.5 2.1 virginica
115 5.7 2.5 5.0 2.0 virginica
116 5.8 2.8 5.1 2.4 virginica
117 6.4 3.2 5.3 2.3 virginica
118 6.5 3.0 5.5 1.8 virginica
119 7.7 3.8 6.7 2.2 virginica
120 7.7 2.6 6.9 2.3 virginica
121 6.0 2.2 5.0 1.5 virginica
122 6.9 3.2 5.7 2.3 virginica
123 5.6 2.8 4.9 2.0 virginica
124 7.7 2.8 6.7 2.0 virginica
125 6.3 2.7 4.9 1.8 virginica
126 6.7 3.3 5.7 2.1 virginica
127 7.2 3.2 6.0 1.8 virginica
128 6.2 2.8 4.8 1.8 virginica
129 6.1 3.0 4.9 1.8 virginica
130 6.4 2.8 5.6 2.1 virginica
131 7.2 3.0 5.8 1.6 virginica
132 7.4 2.8 6.1 1.9 virginica
133 7.9 3.8 6.4 2.0 virginica
134 6.4 2.8 5.6 2.2 virginica
135 6.3 2.8 5.1 1.5 virginica
136 6.1 2.6 5.6 1.4 virginica
137 7.7 3.0 6.1 2.3 virginica
138 6.3 3.4 5.6 2.4 virginica
139 6.4 3.1 5.5 1.8 virginica
140 6.0 3.0 4.8 1.8 virginica
141 6.9 3.1 5.4 2.1 virginica
142 6.7 3.1 5.6 2.4 virginica
143 6.9 3.1 5.1 2.3 virginica
144 5.8 2.7 5.1 1.9 virginica
145 6.8 3.2 5.9 2.3 virginica
146 6.7 3.3 5.7 2.5 virginica
147 6.7 3.0 5.2 2.3 virginica
148 6.3 2.5 5.0 1.9 virginica
149 6.5 3.0 5.2 2.0 virginica
150 6.2 3.4 5.4 2.3 virginica
151 5.9 3.0 5.1 1.8 virginica