272 lines
6.7 KiB
Plaintext
272 lines
6.7 KiB
Plaintext
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Optimization\n",
|
||
|
"\n",
|
||
|
"Let's consider the following code:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import numpy as np\n",
|
||
|
"import matplotlib.pyplot as plt\n",
|
||
|
"\n",
|
||
|
"# position of flower in 2D\n",
|
||
|
"flower = np.array([29.1, 19.1])\n",
|
||
|
"\n",
|
||
|
"def make_bee_track(t):\n",
|
||
|
" \"\"\"Find bee position at time t\"\"\"\n",
|
||
|
" pos0 = (13.21, 4.56)\n",
|
||
|
" velocity = (3.1, 0.25)\n",
|
||
|
" pos_x = pos0[0] + t*velocity[0]\n",
|
||
|
" pos_y = pos0[1] + t*velocity[1]\n",
|
||
|
" return np.array([pos_x,pos_y])\n",
|
||
|
"\n",
|
||
|
"t = np.linspace(0,15,10)\n",
|
||
|
"bee_track = make_bee_track(t)\n",
|
||
|
"\n",
|
||
|
"fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(4,3))\n",
|
||
|
"ax.plot( [flower[0]], [flower[1]], 'or', label='flower' )\n",
|
||
|
"ax.plot( bee_track[0], bee_track[1], '.-k', label='bee')\n",
|
||
|
"ax.axis('equal')\n",
|
||
|
"ax.legend()\n",
|
||
|
"ax.set_xlabel('x')\n",
|
||
|
"ax.set_ylabel('y')\n"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"In the above code, we *parameterized* the bee trajectory by the variable `t` in the function `make_bee_track()`. This means we could get a new point on the track by choosing a new value of `t`. For example:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(make_bee_track(0.0))\n",
|
||
|
"print(make_bee_track(0.1))\n",
|
||
|
"print(make_bee_track(0.2))\n",
|
||
|
"print(make_bee_track(1.0))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Now let's measure the distance between the bee and the flower."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def compute_distance(a,b):\n",
|
||
|
" a = np.array(a)\n",
|
||
|
" b = np.array(b)\n",
|
||
|
" return np.sqrt(np.sum((a-b)**2))\n",
|
||
|
"\n",
|
||
|
"n_time_steps = bee_track.shape[1]\n",
|
||
|
"distance = np.zeros(n_time_steps)\n",
|
||
|
"for i in range(n_time_steps):\n",
|
||
|
" bee_pos = bee_track[:,i]\n",
|
||
|
" distance[i] = compute_distance(bee_pos, flower)\n",
|
||
|
"display(distance)\n",
|
||
|
"\n",
|
||
|
"fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(4,3))\n",
|
||
|
"ax.plot( t, distance )\n",
|
||
|
"ax.set_xlabel('t')\n",
|
||
|
"ax.set_ylabel('distance')"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"Given the plot of distance versus t above, we can see the distance is minimized when t is near 5. What is the bee's position when t is 5?"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(make_bee_track(5))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"We can check back to the xy plot to see, indeed, this point is pretty close to the flower.\n",
|
||
|
"\n",
|
||
|
"What if we want to know, however, exactly the closest point? There are several ways to find this. Here we are going to use a \"brute force\" approach which will work on many different problems. Specifically, we will use [scipy.optimize.minimize_scalar](https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize_scalar.html). The overall idea of this kind of *numerical optimization* is that we find the best fitting parameter to minimize our \"error\".\n",
|
||
|
"\n",
|
||
|
"In this example, we are not so much concerned with the exact algorithm being used, but with the way we call this algorithm.\n",
|
||
|
"\n",
|
||
|
"Let's create a function which uses the `flower` location to compute distance:"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"def calc_distance_func(t):\n",
|
||
|
" # assume variable 'flower' in our global scope\n",
|
||
|
" x1, y1 = flower\n",
|
||
|
" # calculate bee position (also assuming 'make_bee_track' in scope)\n",
|
||
|
" x2, y2 = make_bee_track(t)\n",
|
||
|
" dist = compute_distance((x1,y1), (x2,y2))\n",
|
||
|
" print(f't: {t} -> dist: {dist}')\n",
|
||
|
" return dist"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"calc_distance_func(0)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"calc_distance_func(5)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import scipy.optimize\n",
|
||
|
"result = scipy.optimize.minimize_scalar(calc_distance_func)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"scipy.optimize.minimize_scalar?"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"result"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"type(result)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"result.x"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"print(calc_distance_func(5))"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"calc_distance_func(5.468493134264144)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"# Where is the bee for this value of `t`?\n",
|
||
|
"make_bee_track(5.468493134264144)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": null,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(4,3))\n",
|
||
|
"ax.plot( [flower[0]], [flower[1]], 'or', label='flower' )\n",
|
||
|
"ax.plot( bee_track[0], bee_track[1], '.-k', label='bee')\n",
|
||
|
"\n",
|
||
|
"x,y = make_bee_track(5.468493134264144)\n",
|
||
|
"ax.plot( [x], [y] ,'x', label='closest')\n",
|
||
|
"ax.axis('equal')\n",
|
||
|
"ax.legend()\n",
|
||
|
"ax.set_xlabel('x')\n",
|
||
|
"ax.set_ylabel('y')\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3 (ipykernel)",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.11.10"
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 4
|
||
|
}
|